教师姓名学生姓名年级初三上课日期2015/11学科数学课题名称二次函数知识点总结计划时长2h教学目标教学重难点
一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2.二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.
二、二次函数的基本形式1.二次函数基本形式:的性质:a的绝对值越大,抛物线的开口越小。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2.的性质:上加下减。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.3.的性质:左加右减。的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.4.的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.
三、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)
四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.
五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.
六、二次函数的性质1.当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.
七、二次函数解析式的表示方法1.一般式:(,,为常数,);2.顶点式:(,,为常数,);3.两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
八、二次函数的图象与各项系数之间的关系1.二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2.一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3.常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.
九、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2.抛物线的图象与轴一定相交,交点坐标为,;3.二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:抛物线与轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根抛物线与轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根抛物线与轴无交点二次三项式的值恒为正一元二次方程无实数根.
十、函数的应用二次函数应用
一、二次函数的定义例
1、已知函数y=(m-1)xm2+1+5x-3是二次函数,求m的值。练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。
二、五点作图法的应用例2.已知抛物线,
(1)用配方法求它的顶点坐标和对称轴并用五点法作图
(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.
1、(2009泰安)抛物线的顶点坐标为(A)(-2,7)(B)(-2,-25)(C)(2,7)(D)(2,-9)
2、(2009年南充)抛物线的对称轴是直线()A.B.C.D.
3、(2009年遂宁)把二次函数用配方法化成的形式
三、及的符号确定例3.已知抛物线如图,试确定:
(1)及的符号;
(2)与的符号。
1、已知二次函数()的图象如图所示,有下列四个结论:④,其中正确的个数有()A.1个B.2个C.3个D.4个
2、已知二次函数的图象如图所示,有以下结论:①;②;③;④;⑤其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤
3、二次函数的图象如图所示,则下列关系式中错误的是()A.a<0B.c>0C.>0D.>
04、图12为二次函数的图象,给出下列说法:①;②方程的根为;③;④当时,y随x值的增大而增大;⑤当时,.其中,正确的说法有.(请写出所有正确说法的序号)
5、已知=次函数y=ax+bx+c的图象如图.则下列5个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的个数为()A.2B3C、4D、5
四、二次函数解析式的确定例4.求二次函数解析式:
(1)抛物线过(0,2),(1,1),(3,5);
(2)顶点M(-1,2),且过N(2,1);
(3)已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC=5,求该二次函数的解析式。练习:根据下列条件求关于x的二次函数的解析式
(1)当x=3时,y最小值=-1,且图象过(0,7)
(2)图象过点(0,-2)(1,2)且对称轴为直线x=
(3)图象经过(0,1)(1,0)(3,0)
五、二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)例
5、已知抛物线y=x2-2x-8,
(1)求证:该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点为A、B,且它的顶点为P,求△ABP的面积。
1、二次函数y=x2-2x-3图象与x轴交点之间的距离为
2、如图所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为()A.6B.4C.3D.
13、若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是
六、直线与二次函数的问题例6已知:二次函数为y=x2-x+m,
(1)写出它的图像的开口方向,对称轴及顶点坐标;
(2)m为何值时,顶点在x轴上方,
(3)若抛物线与y轴交于A,过A作AB∥x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.
1、抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
2、直线y=7x+1与抛物线y=x2+3x+5的图象有个交点。例7已知关于x的二次函数y=x2-mx+与y=x2-mx-,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点.
(1)试判断哪个二次函数的图像经过A,B两点;
(2)若A点坐标为(-1,0),试求B点坐标;
(3)在
(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小?练习如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在
(2)中的抛物线上求出点P,使得S△ABP=S△ABO.例8已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图像经过点A(m,0),B(0,n),如图所示.
(1)求这个抛物线的解析式;
(2)设
(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
七、用二次函数解决最值问题例9某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?例3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5m,则学生丁的身高为(建立的平面直角坐标系如右图所示)()A.1.5mB.1.625mC.1.66mD.1.67m
八、二次函数应用(一)经济策略性1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。
经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。假定每月销售件数y(件)是价格X的一次函数.
(1)试求y与x的之间的关系式.
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入-总成本)2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。
(1)设X天后每千克活蟹的市场价为P元,写出P关于X的函数关系式。
(2)如果放养X天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式。
(2)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额—收购成本—费用),最大利润是多少?自我检测(30分钟)一.选择题。1.用配方法将化成的形式()A.B.C.D.2.对于函数,下面说法正确的是()A.在定义域内,y随x增大而增大B.在定义域内,y随x增大而减小C.在内,y随x增大而增大D.在内,y随x增大而增大3.已知,那么的图象()4.已知点(-1,3)(3,3)在抛物线上,则抛物线的对称轴是()A.B.C.D.5.一次函数和二次函数在同一坐标系内的图象()6.函数的最大值为()A.B.C.D.不存在二.填空题。
7.是二次函数,则____________。8.抛物线的开口向________,对称轴是____________,顶点坐标是____________。9.抛物线的顶点是(2,3),且过点(3,1),则___,___,____________。
10.函数图象沿y轴向下平移2个单位,再沿x轴向右平移3个单位,得到函数____________的图象。三.解答题。12.抛物线,m为非负整数,它的图象与x轴交于A和B,A在原点左边,B在原点右边。
(1)求这个抛物线解析式。
(2)一次函数的图象过A点与这个抛物线交于C,且,求一次函数解析式。◆强化训练
一、填空题1.右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2≥y1时,x的取值范围_______.2.已知抛物线y=a2+bx+c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______.3.已知二次函数y=-x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为______.4.若二次函数y=x2-4x+c的图像与x轴没有交点,其中c为整数,则c=_______(只要求写出一个).5.已知抛物线y=ax2+bx+c经过点(1,2)与(-1,4),则a+c的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=-s2+s+.如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是______.7.二次函数y=x2-2x-3与x轴两交点之间的距离为______.8.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_____元/m2.
二、选择题9.二次函数y=ax2+bx+c的图像如图所示,则下列关系式不正确的是()A.a<0B.abc>0C.a+b+c<0D.b2-4ac>0(。
【二次函数知识点总结(详细) 二次函数知识点总结笔记】相关文章:
二次函数知识点总结(共) 初三数学二次函数知识点总结07-31
二次函数知识点总结(整理版) 二次函数知识点总结图片07-31
初中数学二次函数知识点总结 初中数学二次函数知识点总结归纳07-31
二次函数知识点总结(详细) 二次函数知识点总结笔记07-31
二次函数知识点整理总结 二次函数知识点整理总结图片07-31
刑释解教人员安置帮教工作总结 刑释解教人员安置帮教工作报告07-31