高一数学必修一知识点总结 高一数学必修一知识点总结归纳2022

时间:2023-07-31 13:32:18 文档下载 投诉 投稿

        高一数学必修1各章知识点总结

        (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

        (2)集合的表示方法:列举法与描述法。◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:

        4、集合的分类:

        (1)有限集含有有限个元素的集合

        (2)无限集含有无限个元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合间的基本关系1.“包含”关系—子集注意:有两种可能

        (1)A是B的一部分,;

        (2)A与B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。◆有n个元素的集合,含有2n个子集,2n-1个真子集

        三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA=韦恩图示性质AA=AAΦ=ΦAB=BAABAABBAA=AAΦ=AAB=BAABAABB(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B着名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.4.设集合A=,B=,若AB,则的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。

        6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

        二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:

        (1)分式的分母不等于零;

        (2)偶次方根的被开方数不小于零;

        (3)对数式的真数必须大于零;

        (4)指数、对数式的底必须大于零且不等于1.

        (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

        (6)指数为零底不可以等于零,

        (7)实际问题中的函数的定义域还要保证实际问题有意义.◆相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域

        (1)观察法

        (2)配方法

        (3)代换法3.函数图象知识归纳

        (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

        (2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念

        (1)区间的分类:开区间、闭区间、半开半闭区间

        (2)无穷区间

        (3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:

        (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

        (2)集合A中不同的元素,在集合B中对应的象可以是同一个;

        (3)不要求集合B中的每一个元素在集合A中都有原象。

        6.分段函数

        (1)在定义域的不同部分上有不同的解析表达式的函数。

        (2)各部分的自变量的取值情况.

        (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。二.函数的性质1.函数的单调性(局部性质)

        (1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;

        (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

        (3).函数单调区间与单调性的判定方法(A)定义法:任取x1,x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)

        (1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

        (2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

        (3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

        (1)再根据定义判定;

        (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

        (3)利用定理,或借助函数的图象判定.

        9、函数的解析表达式

        (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

        (2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)利用二次函数的性质(配方法)求函数的最大(小)值利用图象求函数的最大(小)值利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:⑴⑵2.设函数的定义域为,则函数的定义域为__3.若函数的定义域为,则函数的定义域是4.函数,若,则=5.求下列函数的值域:⑴⑵

        (3)

        (4)6.已知函数,求函数,的解析式7.已知函数满足,则=。

        8.设是R上的奇函数,且当时,,则当时=在R上的解析式为9.求下列函数的单调区间:⑴⑵⑶10.判断函数的单调性并证明你的结论.11.设函数判断它的奇偶性并且求证:.当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,◆0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质

        (1)·;

        (2);

        (3).

        (二)指数函数及其性质

        1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.

        2、指数函数的图象和性质a>10<a<1定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:

        (1)在[a,b]上,值域是或;

        (2)若,则;取遍所有正数当且仅当;

        (3)对于指数函数,总有;

        二、对数函数

        (一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:注意底数的限制,且;;注意对数的书写格式.两个重要对数:常用对数:以10为底的对数;自然对数:以无理数为底的对数的对数.◆指数式与对数式的互化幂值真数=N=b底数指数对数

        (二)对数的运算性质如果,且,,,那么:·+;-;.注意:换底公式(,且;,且;).利用换底公式推导下面的结论

        (1);

        (2).

        (二)对数函数

        1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.对数函数对底数的限制:,且.

        2、对数函数的性质:a>10<a<1定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)

        (三)幂函数

        1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

        2、幂函数性质归纳.

        (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

        (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

        (3)时,幂函数的图象在区间上是减函数.在3.函数y=log(2x2-3x+1)的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,

        (1)求的定义域

        (2)求使的的取值范围

        2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.

        3、函数零点的求法:(代数法)求方程的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

        4、二次函数的零点:二次函数.

        (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

        (2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

        (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.5.函数的模型。

【高一数学必修一知识点总结 高一数学必修一知识点总结归纳2022】相关文章:

技能比赛总结范文技能大赛总结写 技能大赛参赛总结07-31

技能大赛活动总结 劳动技能大赛活动总结07-31

技能大赛总结【九篇】 技能大赛总结发言稿07-31

技能大赛总结范文技能大赛工作总结 技能大赛总结汇报07-31

技能竞赛活动总结范文 技能竞赛总结讲话07-31

高一数学必修1知识点归纳总结 高一数学必修1知识梳理07-31

高一数学必修一知识点总结 高一数学必修一知识点总结归纳202207-31

人教版高一数学必修一知识点总结大全 人教版高一数学必修一知识点总结思维导图07-31

高一数学必修一知识点总结 高一数学必修一知识点总结导图07-31

高一数学必修一必记知识点归纳总结 高一数学必修1知识归纳07-31

高一数学必修一知识点总结归纳 高一数学必修一知识点总结归纳6篇07-31

高一数学必修一知识点总结人教版 高一数学必修一知识点归纳笔记07-31

高一数学必修一:各章知识点总结 高一数学必修一第二章知识点梳理07-31