高中数列公式总结高中数列公式总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,不妨坐下来好好写写总结吧。总结一般是怎么写的呢?下面是小编为大家收集的高中数列公式总结,仅供参考,大家一起来看看吧!等比数列公式性质知识点1.等比数列的有关概念
(1)定义:如果一个数列从这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).
(2)等比中项:如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.2.等比数列的有关公式
(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.4.等比数列的特征
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.等比数列知识点1.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=Sn-S(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质
(1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)
(6)任意两项am,an的关系为an=am·q’(n-m)
(7)在等比数列中,首项a1与公比q都不为零。注意:上述公式中a’n表示a的n次方。
等比数列知识点总结等比数列:如果一个数列从am·q^(n-m);2:等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+13:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。4:性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;②在等比数列中,依次每k项之和仍成等比数列.例题:设ak,al,am,an是等比数列中的这的两项之和等于首末两项之和。即:a(1+k)+a(n-k)=a1+an。
【高中数列公式总结 高中数列公式总结大全图片】相关文章:
数列常用性质公式总结 数列性质大全07-20
(完整)数列常见数列公式(很全)07-20
(完整版)数列公式总结07-20
大学生大二学期个人总结 大学生大二学期个人总结200字07-20
大学生大二学期自我总结范文 大二学期自我总结100字07-20
大二个人总结 大二个人总结800字07-20