高一数学必修一知识点总结归纳 高一数学必修二概率知识点归纳

时间:2023-07-31 13:40:08 文档下载 投诉 投稿

        高一数学必修一知识点总结归纳高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

        IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

        特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

        |a|越大,则抛物线的开口越小。高一数学必修一知识点总结归纳2知识点

        1、集合与元素一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

        班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的知识点

        2、解集合问题的关键解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合,比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等高一数学必修一知识点总结归纳3反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。

        由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。上面给出了k分别为正和负(2和—2)时的函数图像。

        当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。知识点:

        1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

        2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。

        (加一个数时向左平移,减一个数时向右平移)高一数学必修一知识点总结归纳4【基本初等函数】

        一、指数函数

        (一)指数与指数幂的运算

        1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

        当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。

        由此可得:负数没有偶次方根;0的任何次方根都是0,记作。注意:当是奇数时,当是偶数时,

        2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

        3、实数指数幂的运算性质

        (二)指数函数及其性质

        1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

        注意:指数函数的底数的取值范围,底数不能是负数、零和1。

        2、指数函数的图象和性质高一数学必修一知识点总结归纳5对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

        对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

        (1)对数函数的定义域为大于0的实数集合。

        (2)对数函数的值域为全部实数集合。

        (3)函数总是通过(1,0)这点。

        (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

        (5)显然对数函数无界。

        高一数学必修一知识点总结归纳6

        一、集合及其表示

        1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

        比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

        2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

        有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

        集合A中是数组元素(x,y),集合B中只有元素y。

        3、集合的三个特性

        (1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

        解:,A=B注意:该题有两组解。

        (2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}

        (3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。高一数学必修一知识点总结归纳7

        1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式顶点坐标对称轴y=ax^2(0,0)x=0y=a(x—h)^2(h,0)x=hy=a(x—h)^2+k(h,k)x=hy=ax^2+bx+c(—b/2a,[4ac—b^2]/4a)x=—b/2a当h>0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到。

        当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。

        2、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

        3、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。

        4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

        (1)图象与y轴一定相交,交点坐标为(0,c);

        (2)当△=b^2—4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根。

        这两点间的距离AB=|x?—x?|当△=0。图象与x轴只有一个交点;当△<0。图象与x轴没有交点。

        当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

【高一数学必修一知识点总结归纳 高一数学必修二概率知识点归纳】相关文章:

高一数学必修一知识点总结人教版 高一数学必修一知识点归纳笔记07-31

高一数学必修一:各章知识点总结 高一数学必修一第二章知识点梳理07-31

高一数学必修一知识点总结 高一数学必修一知识点总结结构图07-31

高一数学必修一知识点总结归纳 高一数学必修一知识点思维导图07-31

高一数学必修一知识点总结 人教版高一数学必修一知识点总结07-31

高一数学必修一知识点总结 高一数学必修一知识点总结归纳07-31

高一数学必修一知识点总结归纳 高一数学必修二概率知识点归纳07-31

全民阅读活动总结 全民阅读活动总结5007-31

全民阅读活动总结 全民阅读活动总结报告07-31

全民阅读的活动总结 全民阅读的活动总结与反思07-31

2023年全民阅读活动总结 2021年全民阅读活动07-31

小学全民阅读活动总结 小学全民阅读活动实施方案07-31

全民阅读活动的总结 全民阅读活动总结 树品牌07-31