高中数学平面向量知识点总结 高中数学平面向量例题及解析

时间:2023-07-21 02:03:03 文档下载 投诉 投稿

        平面向量知识点总结记作:||模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。的方向是任意的。注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。

        如已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到的向量是_____(答:(3,0))二.向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。记作:∥∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。记作:=规定:=任两相等的非零向量都可用一有向线段表示,与起点无关。

        3.共线向量:任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量。如下列命题:

        (1)若,则。

        (2)两个向量相等的充要条件是它们的起点相同,终点相同。

        (3)若,则是平行四边形。

        (4)若是平行四边形,则。

        (5)若,则。

        (6)若,则。其中正确的是_______(答:

        (4)(5))三.向量的加法:1.定义:求两个向量的和的运算,叫做向量的加法。注意:;两个向量的和仍旧是向量(简称和向量)2.三角形法则:强调:1“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点2可以推广到n个向量连加34不共线向量都可以采用这种法则——三角形法则3.加法的交换律和平行四边形法则1向量加法的平行四边形法则(三角形法则):2向量加法的交换律:+=+3向量加法的结合律:(+)+=+(+)4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。

        四.向量的减法:1.用“相反向量”定义向量的减法1“相反向量”的定义:与a长度相同、方向相反的向量。记作a2规定:零向量的相反向量仍是零向量。(a)=a任一向量与它的相反向量的和是零向量。

        a+(a)=0如果a、b互为相反向量,则a=b,b=a,a+b=03向量减法的定义:向量a加上的b相反向量,叫做a与b的差。即:ab=a+(b)求两个向量差的运算叫做向量的减法。2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b+x=a,则x叫做a与b的差,记作ab3.向量减法做图:表示ab。

        强调:差向量“箭头”指向被减数总结:1向量的概念:定义、表示法、模、零向量、单位向量、平行向量、相等向量、共线向量2向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律如

        (1)化简:①___;②____;③_____(答:①;②;③);

        (2)若正方形的边长为1,,则=_____(答:);

        (3)若O是所在平面内一点,且满足,则的形状为____(答:直角三角形);

        (4)若为的边的中点,所在平面内有一点,满足,设,则的值为___(答:2);

        (5)若点是的外心,且,则的内角为____(答:);五:实数与向量的积(强调:“模”与“方向”两点)1.实数与向量的积实数λ与向量的积,记作:λ定义:实数λ与向量的积是一个向量,记作:λ1|λ|=|λ|||2λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=2.运算定律:结合律:λ(μ)=(λμ)①注意几个问题:1、必须不共线,且它是这一平面内所有向量的一组基底2这个定理也叫共面向量定理3λ1,λ2是被,,唯一确定的数量

        (1)下列向量组中,能作为平面内所有向量基底的是A.B.C.D.

        (2)已知分别是的边上的中线,且,则可用向量表示为_____(答:);

        (3)已知中,点在边上,且,,则的值是___(答:0)2设A(x1,y1)B(x2,y2)则=(x2x1,y2y1)3两个向量相等的充要条件是两个向量坐标相等。3.结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。同理可得:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。

        如设,且,,则C、D的坐标分别是__________(答:);4.实数与向量积的坐标运算:已知=(x,y)实数λ则λ=λ(x+y)=λx+λy∴λ=(λx,λy)结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。如

        (1)已知点,,若,则当=____时,点P在注意:1消去λ时不能两式相除,∵y1,y2有可能为0,∵∴x2,y2中至少有一个不为02充要条件不能写成∵x1,x2有可能为03从而向量共线的充要条件有两种形式:∥()如

        (1)若向量,当=_____时与共线且方向相同(答:2);

        (2)已知,,,且,则x=______(答:4);

        (3)设,则k=_____时,A,B,C共线(答:-2或11)向量垂直的充要条件:.特别地。如

        (1)已知,若,则(答:);

        (2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,,则点B的坐标是________(答:(1,3)或(3,-1));

        (3)已知向量,且,则的坐标是________(答:)九.平面向量的数量积及运算律

        (一)平面向量数量积1.定义:平面向量数量积(内积)的定义,ab=|a||b|cos,并规定0与任何向量的数量积为0。

        2.向量夹角的概念:范围0≤≤180C3.注意的几个问题;——两个向量的数量积与向量同实数积有很大区别1两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定。2两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个数量的积,书写时要严格区分。3在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0。

        因为其中cos有可能为0。这就得性质2。4已知实数a、b、c(b0),则ab=bca=c。

        但是ab=bca=c如右图:ab=|a||b|cos=|b||OA|bc=|b||c|cos=|b||OA|ab=bc但ac5在实数中,有(ab)c=a(bc),但是(ab)ca(bc)显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线。如

        (1)△ABC中,,,,则_________(答:-9);

        (2)已知,与的夹角为,则等于____(答:1);

        (3)已知,则等于____(答:);

        (4)已知是两个非零向量,且,则的夹角为____(答:)

        (二)投影的概念及两个向量的数量积的性质:1.“投影”的概念:作图定义:|b|cos叫做向量b在a方向上的投影。注意:1投影也是一个数量,不是向量。

        2当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为|b|;当=180时投影为|b|。2.向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cos的乘积。3.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量。

        1ea=ae=|a|cos2abab=03当a与b同向时,ab=|a||b|;当a与b反向时,ab=|a||b|。特别的aa=|a|2或4cos=5|ab|≤|a||b|如已知,,且,则向量在向量上的投影为______(答:)如

        (1)已知,,如果与的夹角为锐角,则的取值范围是______(答:或且);

        (2)已知的面积为,且,若,则夹角的取值范围是_________(答:);

        (3)已知与之间有关系式,①用表示;②求的最小值,并求此时与的夹角的大小(答:①;②最小值为,)十.平面向量的数量积的运算律1.交换律:ab=ba2.结合律:(a)b=(ab)=a(b)3.分配律:(a+b)c=ac+bc如下列命题中:①;②;③;④若,则或;⑤若则;⑥;⑦;⑧;⑨。其中正确的是______(答:①⑥⑨)十一.平面向量的数量积的坐标表示1.设a=(x1,y1),b=(x2,y2),x轴上单位向量i,y轴上单位向量j,则:ii=1,jj=1,ij=ji=02.ab=x1x2+y1y2。

        如已知向量=(sinx,cosx),=(sinx,sinx),=(-1,0)。

        (1)若x=,求向量、的夹角;

        (2)若x∈,函数的最大值为,求的值(答:或);3.长度、角度、垂直的坐标表示1a=(x,y)|a|2=x2+y2|a|=2若A=(x1,y1),B=(x2,y2),则=3cos=4∵abab=0即x1x2+y1y2=0(注意与向量共线的坐标表示原则)如已知均为单位向量,它们的夹角为,那么=_____(答:);十二.平移

        一、平移的概念:点的位置、图形的位置改变,而形状、大小没有改变,从而导致函数的解析式也随着改变。这个过程称做图形的平移。

        (作图、讲解)一个平移实质上是一个向量

        二、平移公式:设=(h,k),即:∴(x’,y’)=(x,y)+(h,k)∴——平移公式

        三、注意:1它反映了平移后的新坐标与原坐标间的关系2知二求一3这个公式是坐标系不动,点P(x,y)按向量a=(h,k)平移到点P’(x’,y’)。另一种平移是:点不动,把坐标系平移向量a,即:。这两种变换使点在坐标系中的相对位置是一样的,这两个公式作用是一致的。

        十四.正弦定理1正弦定理的叙述:在一个三角形中。各边和它所对角的正弦比相等公式即:==它适合于任何三角形。2可以证明===2R(R为△ABC外接圆半径)3每个等式可视为一个方程:知三求一从理论上正弦定理可解决两类问题:1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

        十五.余弦定理1.余弦定理语言描述:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍。2.余弦定理公式:4.强调几个问题:1熟悉定理的结构,注意“平方”“夹角”“余弦”等2知三求一3当夹角为90时,即三角形为直角三角形时即为勾股定理(特例)4变形:

        三、余弦定理的应用能解决的问题:1.已知三边求角2.已知三边和它们的夹角求;当反向或有;当不共线(这些和实数比较类似).

        (3)在中,①若,则其重心的坐标为。如若⊿ABC的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则⊿ABC的重心的坐标为_______(答:);②为的重心,特别地为的重心;③为的垂心;④向量所在直线过的内心(是的角平分线所在直线);⑤的内心;

        (3)若P分有向线段所成的比为,点为平面内的任一点,则,特别地为的中点;

        (4)向量中三终点共线存在实数使得且.如平面直角坐标系中,为坐标原点,已知两点,,若点满足,其中且,则点的轨迹是_______(答:直线AB)。

【高中数学平面向量知识点总结 高中数学平面向量例题及解析】相关文章:

儿科实习心得 儿科出科个人小结07-21

儿科实习小结 儿科出科小结护士07-21

向量知识点 数学向量知识点07-21

向量知识点与公式总结 向量知识点与公式总结高等数学?07-21

高二数学平面向量知识点总结 高中数学必修二平面向量知识点总结07-21

向量知识点与公式总结 高中向量知识点与公式总结07-21

高中数学平面向量知识点总结 高中数学平面向量例题及解析07-21

(完整版)平面向量知识点及方法总结总结07-21

高中数学向量知识点总结 高中数学向量知识点总结大全07-21

向量知识点总结 高中空间向量知识点总结07-21

高中数字必修二(平面向量)知识点及定理公式 高中教材必修二数学07-21

大学生实训课总结报告 大学生实训课总结报告200字怎么写07-21

学生实训报告个人总结 学生实训报告个人总结500字07-21