线性代数知识点总结线性代数知识点总结篇1知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例知识点53:利用相似对角化求矩阵和矩阵的幂
一、行列式概念和性质
1、逆序数:所有的逆序的总数
2、行列式定义:不同行不同列元素乘积代数和
3、行列式性质:(用于化简行列式)
(1)行列互换(转置),行列式的值不变
(2)两行(列)互换,行列式变号
(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式
(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
二、重要行列式
1、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积
2、副对角线行列式的值等于副对角线元素的乘积乘
3、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则
4、n阶(n≥2)范德蒙德行列式
四、矩阵的秩
1、秩的定义:非零子式的最高阶数注:
(1)r(A)=0意味着所有元素为0,即A=O
(2)r(An某n)=n(满秩)←→|A|≠0←→A可逆;r(A)<n←→|A|=0←→A不可逆;
(3)r(A)=r(r=
1、
2、…、n-1)←→r阶子式非零且所有r+1子式均为0。
2、秩的求法:
(1)A为抽象矩阵:由定义或性质求解;
(2)A为数字矩阵:A→初等行变换→阶梯型(每行
五、伴随矩阵
六、分块矩阵
1、分块矩阵的乘法:要求前列后行分法相同。
2、分块矩阵求逆:向量
一、向量的概念及运算
1、长度定义:||α||=
二、线性组合和线性表示
1、线性表示的充要条件:非零列向量β可由α1,α2,…,αs线性表示
(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,xs)T=β有解。
(3)←→r(α1,α2,…,αs)<s即秩小于个数
3、线性相关的充分条件:
(1)向量组含有零向量或成比例的向量必相关
(4)以少表多,多必相关
(2)秩:若小于阶数,线性相关;若等于阶数,线性无关
四、极大线性无关组与向量组的秩
1、极大线性无关组不唯一
2、向量组的秩:极大无关组中向量的个数成为向量组的秩对比:矩阵的秩:非零子式的最高阶数
3、极大线性无关组的求法
(1)α1,α2,…,αs为抽象的:定义法
(2)α1,α2,…,αs为数字的:(α1,α2,…,αs)→初等行变换→阶梯型矩阵则每行设α1,α2,α3线性无关
(1)正交化令β1=α1
(2)单位化线性方程组
一、解的判定与性质
1、齐次方程组:
(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数)
(2)有非零解←→r(A)<n
2、非齐次方程组:
(1)无解←→r(A)<r(A|b)←→r(A)=r(A)-1
(2)唯一解←→r(A)=r(A|b)=n
(3)无穷多解←→r(A)=r(A|b)<n
3、解的性质:
(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解
(2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解
(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解
二、基础解系
(2)正交变换法:
二、惯性定理及规范形
1、定义:正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;
2、惯性定理:二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。注:
(1)由于正负惯性指数不变,所以规范形唯一。
(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)
三、合同矩阵
1、定义:A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=CTAC,称A与B合同△
2、总结:n阶实对称矩阵A、B的关系
(1)A、B相似(B=P-1AP)←→相同的特征值
(2)A、B合同(B=CTAC)←→相同的正负惯性指数←→相同的正负特征值的个数
(3)A、B等价(B=PAQ)←→r(A)=r(B)注:实对称矩阵相似必合同,合同必等价
四、正定二次型与正定矩阵
1、正定的定义二次型xTAx,如果任意x≠0,恒有xTAx>0,则称二次型正定,并称实对称矩阵A是正定矩阵。
2、n元二次型xTAx正定充要条件:
(1)A的正惯性指数为n
(2)A与E合同,即存在可逆矩阵C,使得A=CTC或CTAC=E
(3)A的特征值均大于0
(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)
3、总结:二次型正定判定(大题)
(1)A为数字:顺序主子式均大于0
(2)A为抽象:①证A为实对称矩阵:AT=A;②再由定义或特征值判定
4、重要结论:
(1)若A是正定矩阵,则kA(k>0),Ak,AT,A-1,A某正定
(2)若A、B均为正定矩阵,则A+B正定
【线性代数知识点总结 线性代数知识点总结归纳】相关文章:
保密宣传月工作总结 保密宣传月活动总结07-21
线性代数知识点总结汇总 线性代数知识点总结汇总知乎07-21