八年级数学下册知识点总结分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,(6.正整数指数幂运算性质也能够推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法:;
(2)幂的乘方:;
(3)积的乘方:;
(4)同底数的幂的除法:(a≠0);
(5)商的乘方:();(b≠0)7.分式方程:含分式,并且分母中含未知数的方程——分式方程。解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,所以分式方程一定要验根。
解分式方程的步骤:
(1)能化简的先化简
(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;
(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。列方程应用题的步骤是什么?
(1)审;
(2)设;
(3)列;
(4)解;
(5)答.应用题有几种类型;基本公式是什么?基本上有五种:
(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
(2)数字问题在数字问题中要掌握十进制数的表示法.
(3)工程问题基本公式:工作量=工时×工效.
(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n位整数时,其中10的指数是用科学记数法表示绝对值小于1的正小数时,其中10的指数是2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点3.性质:当k>0时双曲线的两支分别位于1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。3.经过证明被确认准确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。菱形的判定定理:1.一组邻边相等的平行四边形是菱形。2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)正方形定义:一个角是直角的菱形或邻边相等的矩形。正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。直角梯形的定义:有一个角是直角的梯形等腰梯形的定义:两腰相等的梯形。等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。解梯形问题常用的辅助线:如图线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。
三角形的重心:三条中线的交点重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
宽和长的比是(约为0.618)的矩形叫做黄金矩形。2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据5.撰写调查报告6.交流6.平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。
【八年级数学下册知识点总结 八年年级下册数学知识点】相关文章:
新人教版八年级数学下册知识点归纳总结(非常有用) 人教版八年级下册数学知识点大全07-19
八年级数学下册知识点总结(全) 八年级数学下册知识点总结归纳07-19
八年级下册数学知识点总结归纳 7年级下册数学知识点归纳07-19
八年级下册数学知识点归纳 八年级下册数学知识点归纳人教版07-19
八年级下册数学各章节知识点总结 八年级下册数学期末知识点总结07-19
八年级下册数学知识点总结归纳 八年级下册数学知识点总结归纳人教版07-19
初二下学期数学知识点总结归纳 初二下数学知识点总结北师大版07-19
人教版八年级数学下册知识点总结归纳 新人教版八年级数学下册知识点07-19
八年级下册数学知识点总结 人教版八年级下册数学知识点总结07-19
党员培训个人总结精选范文 党员培训个人总结精选范文大全07-19
入党积极分子培训个人工作总结07-19