求函数极限的方法总结 求函数极限的方法总结及例题解析

时间:2023-07-22 00:01:07 文档下载 投诉 投稿

        求函数极限的方法总结求函数极限的方法总结极限是微积分学中的一个基本概念,是微积分学中各种概念和计算方法能够建立和应用的前提。下面求函数极限的方法总结,欢迎阅读参考!求函数极限的方法总结篇1利用函数连续性:直接将趋向值带入函数自变量中,此时要要求分母不能为0;通过已知极限:两个重要极限需要牢记;采用洛必达法则求极限:洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。

        函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

        1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

        全部熟记(x趋近无穷的时候还原成无穷小)。

        2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

        洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成

        3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

        4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!看上去复杂,处理很简单!

        5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

        面对非常复杂的函数,可能只需要知道它的范围结果就出来了!

        6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

        7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

        8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

        9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。

        10、两个重要极限的应用。这两个很重要!对(

        14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。

        一般是从0到1的形式。

        15、单调有界的性质,对付递推数列时候使用证明单调性!

        16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F

        (0)=0时候f

        (0)导数=0的时候,就是暗示你一定要用导数定义!函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。

        还有复合函数的性质:

        1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);

        2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;

        3、复合函数之间是自变量与应变量互换的关系;

        4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为等于函数在这点的值可取的间断点;、积和商,各自求出极限即可得到要求的极限。但是在分解的时候要注意:

        (1)分解的各部分各自的极限都要存在;

        (2)满足相应四则运算法则,(分母不能为0)。

        四则运算的另外一个应用就是“抓大头”。如果极限式中有几项均是无穷大,就从无穷大中选取起主要作用的那一项,选取的标准是选趋近于无穷最快的那一项,对数函数趋于无穷的速度远远小于幂函数,幂函数趋于无穷的速度远远小于指数函数。

        (二)洛必达法则(结合等价无穷小替换、变限积分求导)洛必达法则解决的是“零比零“或“无穷比无穷”型的未定式的形式,所以只要是这两种形式的未定式都可以考虑用洛必达法则。

        当然,在用洛必达的时候需要注意:

        (1)它的三个条件都要满足,尤其要注意比无穷”型,会出“零乘以无穷”,“无穷减无穷”这种形式,我们用的方法就是把他们变成“零比零“或“无穷比无穷”型。

        (三)利用泰勒公式求极限利用泰勒公式求极限,也是考研中常见的方法。泰勒公式可以将常用的等价无穷小进行推广,如

        (四)定积分定义考研中求n项和的极限这类题型用夹逼定理做不出来,这时候需要用定积分定义去求极限。

        常用的是这种形式只要把要求的极限凑成等是左边的形式,就可以用定积分去求极限了。求函数极限的方法总结篇31.验证定义:“猜出”极限值,然后再验证这个值确实是极限值/验证收敛,再由极限唯一性可得。2.利用收敛定理、两边夹、关于无穷小/大的一些结果,四则运算、复合(形式上的“换元公式”)、函数极限的序列式定义。

        从1+2得到的一些基本的结果出发,利用3就可以去完成一大堆极限运算了。先从函数极限开始:3.利用初等函数的连续性,结果就是把求极限变成了求函数值。4.关于P(x)/Q(x),P、Q是两个多项式。

        如果Q(a)不等于0,见4;如果Q(a)等于0但P(a)不等于0,Infinity;如果Q(a)=P(a)=0,利用综合除法,P、Q均除以(x-a),可以多除几次直到"Q"不能被整除,这时候就转化为前面的情形。5.其它0/0:利用“换元”尽一切可能地转化为几种基本极限中的一种或多种。当然这里有一大杀器L'Hospital法则,不过注意它不能用来求sinx/x(x趋于0),因为:L'Hospital法则需要sin的导数,而求出limsinx/x——求sinx的导数。

        关于序列极限;6.0/0,利用a^n-b^n=(a-b)[a^(n-1)+ba^(n-2)+……+b^(n-1)]以及加减辅助项,尽量把减转化为加。7.如果是递推形式,先利用递推式求出极限(如果有)应该满足的方程,求出极限,然后验证序列收敛。或者利用压缩映像。

【求函数极限的方法总结 求函数极限的方法总结及例题解析】相关文章:

求极限的方法及例题总结 求极限的方法及典型例题07-21

16种求极限的方法总结 求极限的几种方法07-21

极限的计算方法总结 极限计算方法总结大一高数07-21

求数列极限的方法总结 求数列极限的方法总结及例题数学分析07-21

求极限方法总结 怎么求极限方法总结07-21

极限求法总结 极限求法总结怎么写07-22

求函数极限的方法总结 求函数极限的方法总结及例题解析07-22

求极限方法总结 求极限的八大方法07-22

重要的求极限的方法总结 求极限的重要法则07-22

抛物线知识点归纳总结与金典习题 抛物线基础知识点汇总07-22

抛物线知识点归纳总结 抛物线知识点归纳总结手写07-22

抛物线知识点 抛物线知识点大全07-22

抛物线知识点总结(整理) 圆,椭圆,双曲线,抛物线知识点总结07-22