【数学知识点】初中三角函数知识点总结学好数学一定要掌握好三角函数公式,下面总结了数学三角函数重点知识点,希望能帮助大家学习数学。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c余弦(cos):邻边比斜边,即cosA=b/c正切(tan):对边比邻边,即tanA=a/b余切(cot):邻边比对边,即cotA=b/a正割(sec):斜边比邻边,即secA=c/b余割(csc):斜边比对边,即cscA=c/asinα=2tan(α/2)/[1tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。解释:
(1)积化和差最后的结果是和或者差;
(2)若两项相乘,后者为cos项,则积化和差的结果为两项相加;若不是,则结果为两项相减;
(3)若两项相乘,一项为sin,另一项为cos,则积化和差的结果中都是sin项;
(4)若两项相乘,两项均为sin,则积化和差的结果前面取负号。感谢您的阅读,祝您生活愉快。
【【数学知识点】初中三角函数知识点总结 初中三角函数的知识点总结】相关文章:
三角函数知识点归纳总结 高中三角函数知识点归纳总结07-20
三角函数知识点总结归纳 三角函数知识点归纳总结高中07-20
三角函数知识点归纳总结 初三三角函数知识点归纳总结07-20
【数学知识点】初中三角函数知识点总结 初中三角函数的知识点总结07-20
高中三角函数知识点归纳总结 高中三角函数知识点归纳总结表格07-20